Lesson 6: Putting It All Together

Opening Exercise

Exercises 1-15: Polynomial Pass

Perform the indicated operation to write each polynomial in standard form.

1.
$$(x^2-3)(x^2+3x-1)$$

2.
$$(5x^2 - 3x - 7) - (x^2 + 2x - 5)$$

3.
$$\frac{x^3-8}{x-2}$$

4.
$$(x+1)(x-2)(x+3)$$

5.
$$(x+1) - (x-2) - (x+3)$$

6.
$$(x+2)(2x^2-5x+7)$$

7.
$$\frac{x^3 - 2x^2 - 65x + 18}{x - 9}$$

8.
$$(x^2 - 3x + 2) - (2 - x + 2x^2)$$

9.
$$(x^2 - 3x + 2)(2 - x + 2x^2)$$

10.
$$\frac{x^3 - x^2 - 5x - 3}{x - 3}$$

11.
$$(x^2 + 7x - 12)(x^2 - 9x + 1)$$

12.
$$(2x^3 - 6x^2 - 7x - 2) + (x^3 + x^2 + 6x - 12)$$

13.
$$(x^3 - 8)(x^2 - 4x + 4)$$

14.
$$\frac{x^3 - 2x^2 - 5x + 6}{x + 2}$$

15.
$$(x^3 + 2x^2 - 3x - 1) + (4 - x - x^3)$$

Lesson 6:

Putting It All Together

Sorting Activity

16. A. Review Exercises 1–15 and then sort them using the categories below. Explain how you know they belong to that category.

Addition Exercises:	Multiplication Exercise:
Justification:	Justification:
Subtraction Exercises:	Division Exercises:
Justification:	Justification:

B. What was similar in most of the 15 problems?

For Exercises 17–20, rewrite each polynomial in standard form by applying the operations in the appropriate order.

17.
$$\frac{(x^2+5x+20)+(x^2+6x-6)}{x+2}$$

Lesson 6:

Putting It All Together

18.
$$(x^2 - 4)(x + 3) - (x^2 + 2x - 5)$$

19.
$$\frac{(x-3)^3}{x^2-6x+9}$$

20.
$$(x+7)(2x-3) - (x^3 - 2x^2 + x - 2) \div (x-2)$$

Lesson Summary

Anatomy of an nth-degree polynomial function $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ leading coefficient cubic quadratic linear constant term term

[source: http://www.drcruzan.com/MathPolynomial.html]

The standard form of a polynomial expression means:

- 1. Write the term with the _____ exponent first.
- 2. Write the terms with lower exponents in _____ order.

(cc) BY-NC-SA

- 3. A constant term always goes _____.
- 4. Always _____ like terms.

Lesson 6:

Putting It All Together

Homework Problem Set

For Problems 1–9, rewrite each expression as a polynomial in standard form.

1.
$$(3x-4)^3$$

2.
$$(2x^2 - x^3 - 9x + 1) - (x^3 + 7x - 3x^2 + 1)$$

3.
$$(x^2 - 5x + 2)(x - 3)$$

4.
$$\frac{x^4 - x^3 - 6x^2 - 9x + 27}{x - 3}$$

5.
$$(x+3)(x-3) - (x+4)(x-4)$$

6.
$$(x+3)^2 - (x+4)^2$$

7.
$$\frac{x^2 - 5x + 6}{x - 3} + \frac{x^3 - 1}{x - 1}$$

8.
$$2(x^2 - 5x + 4) - (x + 3)(x + 2)$$

9.
$$\frac{(x-2)^5}{x-2}$$

10. Explain why these two quotients are different. Compute each one. What do they have in common? Why?

$$\frac{(x-2)^4}{x-2}$$
 and $\frac{x^4-16}{x-2}$

11. What are the area and perimeter of the figure? Assume there is a right angle at each vertex.

Lesson 6:

Putting It All Together

