Graphs of Sine, Cosine, and Tangent Functions (7.7a) (No Shifts) Module 3, Unit 7, Lesson 7

Graphing Sine Function

Х	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$y = \sin x$													

Sketch a graph of $y = \sin x$ using the values provided above. Use the measurements on the unit circle as a guide.

Sine Function $y = A\sin(Bx)$

$$y = A \sin(Bx)$$

- 1. **amplitude** |A| the vertical distance of each wave
- 2. **period** $\frac{2\pi}{B}$ how long it takes to complete one cycle

Steps for Graphing Sine

- 1. Identify the amplitude and the period.
- 2. Find the value of x for the five key points: i-M-i-m-i
 - a. Interval = period x $\frac{1}{4}$
 - b. Add $\left(\frac{period}{4}\right)$ to find successive values of x
- 3. Find the values of *y* for the five key points in step 2.
- 4. Connect the points in 3 with a smooth curve.

a. $y = 2\sin x$

b. $y = -\frac{1}{2}\sin x$

c. $y = \sin 2x$

d. $y = -4 \sin \frac{1}{2} x$

Graphing Cosine Function

Х	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$y = \cos x$													

Sketch a graph of $y = \cos x$ using the values provided above. Use the measurements on the unit circle as a guide.

Cosine Function $y = A\cos(Bx)$

- 1. **amplitude** |A| the vertical distance of each wave
- 2. **period** $\frac{2\pi}{B}$ how long it takes to complete one cycle

Steps for Graphing Cosine

- 1. Identify the amplitude and the period.
- 2. Find the value of *x* for the five key points: M-i-m-i-M
 - a. Interval = period x $\frac{1}{4}$
 - b. Add $\left(\frac{period}{4}\right)$ to find successive values of x
- 3. Find the values of *y* for the five key points in step 2.
- 4. Connect the points in 3 with a smooth curve.

Example 2: Graph two periods of the cosine function.

b.	$y = -3\cos\frac{1}{2}x$
----	--------------------------

$$c. \quad y = -\frac{1}{2}\cos\frac{\pi}{3}x$$

d.
$$y = 2\cos 2x$$

Graphing Tangent Functions

Х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$
$y = \tan x$													

Sketch a graph of $y = \tan x$ using the values provided above.

Tangent Function $y = A \tan Bx$

- 1. **Period**: $\frac{\pi}{B}$
- 2. **Interval**: Period x $\frac{1}{4}$
- 3. An x-intercept occurs midway between each pair of consecutive asymptotes.
- 4. Critical points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between consecutive asymptotes have y-coordinates of -A and A, respectively.

Graphing $y = A \tan(Bx)$

1. A pair of consecutive asymptotes can be found by solving the following for x.

$$Bx = -\frac{\pi}{2}$$
 and $Bx = \frac{\pi}{2}$

- 2. Identify an x-intercept, midway between the consecutive asymptotes.
- 3. Find the critical points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between consecutive asymptotes. These points have y-coordinates –A and A, respectively.

Example 3: Graph two periods of the tangent function.

h	$f(x) = 2 \tan x$	X
υ.	I(X) - Z tan	2

c.
$$y = -\tan 2\pi x$$

$$\leftarrow$$

$$d. \quad f(x) = \frac{1}{3} \tan \frac{\pi}{2} x$$

